References
- Clausen functions: Quadrature processes for efficient calculation of the Clausen functions
- Coulomb wave functions: Connection formulas between Coulomb wave functions
- Debye functions: Calculation of Integer and Noninteger n-Dimensional Debye Functions Using Binomial Coefficients and Incomplete Gamma Functions
- Fermi-Dirac integrals: Notes on Fermi-Dirac Integrals
- Marcum Q-function: https://arxiv.org/pdf/1311.0681v1
- Parabolic cylinder functions
API
FewSpecialFunctions.η — Functionη(a::Number, k::Number)
η(ϵ::Number)Coulomb parameter. For two arguments, returns 1/(a*k). For one argument, returns 1/sqrt(ϵ).
FewSpecialFunctions.C — FunctionC(ℓ::Number, η::Number)Coulomb normalization constant.
FewSpecialFunctions.θ — Functionθ(ℓ::Number, η::Number, ρ::Number)Coulomb phase function.
FewSpecialFunctions.F — FunctionF(ℓ::Number, η::Number, ρ::Number)Regular Coulomb wave function.
References:
FewSpecialFunctions.D⁺ — FunctionD⁺(ℓ::Number, η::Number)Coulomb D⁺ normalization factor.
FewSpecialFunctions.D⁻ — FunctionD⁻(ℓ::Number, η::Number)Coulomb D⁻ normalization factor.
FewSpecialFunctions.H⁺ — FunctionH⁺(ℓ::Number, η::Number, ρ::Number)Outgoing Coulomb wave function.
References:
FewSpecialFunctions.H⁻ — FunctionH⁻(ℓ::Number, η::Number, ρ::Number)Incoming Coulomb wave function.
References:
FewSpecialFunctions.F_imag — FunctionF_imag(ℓ::Number, η::Number, ρ::Number)Imaginary part of the regular Coulomb wave function.
FewSpecialFunctions.G — FunctionG(ℓ::Number, η::Number, ρ::Number)Irregular Coulomb wave function.
References:
FewSpecialFunctions.M_regularized — FunctionM_regularized(α::Number, β::Number, γ::Number)Regularized confluent hypergeometric function.
FewSpecialFunctions.Φ — FunctionΦ(ℓ::Number, η::Number, ρ::Number)Modified Coulomb function Φ.
FewSpecialFunctions.w — Functionw(ℓ::Integer, η::Number)
w(ℓ::Number, η::Number)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.w_plus — Functionw_plus(ℓ::Number, η::Number)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.w_minus — Functionw_minus(ℓ::Number, η::Number)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.h_plus — Functionh_plus(ℓ::Number, η::Number)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.h_minus — Functionh_minus(ℓ::Number, η::Number)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.g — Functiong(ℓ::Number, η::Number)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.Φ_dot — FunctionΦ_dot(ℓ::Number, η::Number, ρ::Number; h=1e-6)Numerical derivative of Φ with respect to ℓ.
FewSpecialFunctions.F_dot — FunctionF_dot(ℓ::Number, η::Number, ρ::Number; h=1e-6)Numerical derivative of F with respect to ℓ.
FewSpecialFunctions.Ψ — FunctionΨ(ℓ::Number, η::Number, ρ::Number; h=1e-6)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.I — FunctionI(ℓ::Number, η::Number, ρ::Number; h=1e-6)Auxiliary function for Coulomb wave functions.
FewSpecialFunctions.debye_function — Functiondebye_function(n::Float64, β::Float64, x::Float64;
tol=1e-35, max_terms=2000) -> Float64Compute the generalized Debye function with parameters n, β, and x.
References:
FewSpecialFunctions.FresnelC — FunctionFresnelC(z::Number) -> NumberComputes the Fresnel cosine integral C(z) for the given number z.
Arguments
z::Number: The input value (can be real or complex).
Returns
Number: The value of the Fresnel cosine integral atz.
FewSpecialFunctions.FresnelS — FunctionFresnelS(z::Number) -> NumberComputes the Fresnel sine integral S(z) for a given number z.
Arguments
z::Number: The input value (real or complex) at which to evaluate the Fresnel sine integral.
Returns
Number: The value of the Fresnel sine integral S(z).
FewSpecialFunctions.FresnelE — FunctionFresnelE(z::Number) -> NumberComputes the Fresnel E integral for the given input z.
Arguments
z::Number: The input value (real or complex) at which to evaluate the Fresnel E integral.
Returns
Number: The value of the Fresnel E integral atz.
FewSpecialFunctions.Clausen — FunctionClausen(n::Int, θ::Float64; N::Int=10, m::Int=20)Compute the Clausen function of order n at angle θ.
References:
FewSpecialFunctions.Ci_complex — FunctionCi_complex(z::ComplexF64)Complex cosine integral function used in Clausen function calculations.
FewSpecialFunctions.f_n — Functionf_n(n::Int, k::Int, θ::Float64)Compute the Clausen series summand fₙ(k, θ): sin(kθ)/kⁿ for even n, cos(kθ)/kⁿ for odd n.
FewSpecialFunctions.F_clausen — FunctionF_clausen(n::Int, z::ComplexF64, θ::Float64)Dispatch to the correct primitive function Fₙ(z, θ) for n = 1..6.
FewSpecialFunctions.FermiDiracIntegral — FunctionFermiDiracIntegral(j, x)The Fermi-Dirac integral
Returns the value $F_j(x)$
Resources: [1] D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978) [2] J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982) [3] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981) [4] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983) [5] H. M. Antia, Rational Function Approximations for Fermi-Dirac Integrals (1993)
https://arxiv.org/abs/0811.0116 https://en.wikipedia.org/wiki/CompleteFermi%E2%80%93Diracintegral https://dlmf.nist.gov/25.12#iii
FewSpecialFunctions.FermiDiracIntegralNorm — FunctionFermiDiracIntegralNorm(j,x)The Fermi-Dirac integral
\[ F_j(x) = \frac{1}{\Gamma(j+1)}\int_0^\infty \frac{t^j}{\exp(t-x)+1} \, dt\]
Returns the value $F_j(x)$
Resources: [1] D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978) [2] J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982) [3] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981) [4] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983) [5] H. M. Antia, Rational Function Approximations for Fermi-Dirac Integrals (1993)
https://arxiv.org/abs/0811.0116 https://de.wikipedia.org/wiki/Fermi-Dirac-Integral https://dlmf.nist.gov/25.12#iii
FewSpecialFunctions.MarcumQ — FunctionMarcumQ(μ::Float64, a::Float64, b::Float64)Compute the generalized Marcum Q-function of order μ with non-centrality parameter a and threshold b.
Reference: [1] https://arxiv.org/pdf/1311.0681v1
FewSpecialFunctions.dQdb — FunctiondQdb(M, a, b)Derivative ∂Q_M(a,b)/∂b of the (standard) Marcum Q-function of order M. Requires M integer ≥1 and a>0.
FewSpecialFunctions.U — FunctionU(a::Float64, x::Float64)::Float64Compute the parabolic cylinder function U(a,x) of the first kind for real parameters.
S. Zhang and J. Jin, 'Computation of Special functions' (Wiley, 1966), E. Cojocaru, January 2009
FewSpecialFunctions.V — FunctionV(a::Float64, x::Float64)::Float64Compute the parabolic cylinder function V(a,x).
FewSpecialFunctions.W — FunctionW(a::Float64, x::Float64)::Float64Compute the parabolic cylinder function W(a,x) for real parameters.
FewSpecialFunctions.dU — FunctiondU(a::Float64, x::Float64)::Float64Compute the derivative of the parabolic cylinder function U(a,x) for real parameters.
FewSpecialFunctions.dV — FunctiondV(a::Float64, x::Float64)::Float64Compute the derivative of the parabolic cylinder function V(a,x) for real parameters.
FewSpecialFunctions.dW — FunctiondW(a::Float64, x::Float64)::Float64Compute the derivative of the parabolic cylinder function W with parameters a evaluated at x.