References

API

FewSpecialFunctions.ηFunction
η(a::Number, k::Number)
η(ϵ::Number)

Coulomb parameter. For two arguments, returns 1/(a*k). For one argument, returns 1/sqrt(ϵ).

source
FewSpecialFunctions.wFunction
w(ℓ::Integer, η::Number)
w(ℓ::Number, η::Number)

Auxiliary function for Coulomb wave functions.

source
FewSpecialFunctions.FresnelCFunction
FresnelC(z::Number) -> Number

Computes the Fresnel cosine integral C(z) for the given number z.

Arguments

  • z::Number: The input value (can be real or complex).

Returns

  • Number: The value of the Fresnel cosine integral at z.
source
FewSpecialFunctions.FresnelSFunction
FresnelS(z::Number) -> Number

Computes the Fresnel sine integral S(z) for a given number z.

Arguments

  • z::Number: The input value (real or complex) at which to evaluate the Fresnel sine integral.

Returns

  • Number: The value of the Fresnel sine integral S(z).
source
FewSpecialFunctions.FresnelEFunction
FresnelE(z::Number) -> Number

Computes the Fresnel E integral for the given input z.

Arguments

  • z::Number: The input value (real or complex) at which to evaluate the Fresnel E integral.

Returns

  • Number: The value of the Fresnel E integral at z.
source
FewSpecialFunctions.StruveFunction
Struve(ν,z,min_tol=1e-15)

Returns the Struve function given by

\[ \mathbf{H}_\nu(z) = \frac{2(z/2)^\nu}{\sqrt{\pi}\Gamma(\nu+1/2)} \int_0^1 (1-t)^{{\nu-1/2}}\sin(zt) \, \text{d}t\]

source
FewSpecialFunctions.f_nFunction
f_n(n::Int, k::Int, θ::Float64)

Compute the Clausen series summand fₙ(k, θ): sin(kθ)/kⁿ for even n, cos(kθ)/kⁿ for odd n.

source
FewSpecialFunctions.FermiDiracIntegralFunction
FermiDiracIntegral(j, x)

The Fermi-Dirac integral

Returns the value $F_j(x)$

Resources: [1] D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978) [2] J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982) [3] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981) [4] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983) [5] H. M. Antia, Rational Function Approximations for Fermi-Dirac Integrals (1993)

https://arxiv.org/abs/0811.0116 https://de.wikipedia.org/wiki/Fermi-Dirac-Integral https://dlmf.nist.gov/25.12#iii

source
FewSpecialFunctions.FermiDiracIntegralNormFunction
FermiDiracIntegralNorm(j,x)

The Fermi-Dirac integral

\[ F_j(x) = \frac{1}{\Gamma(j+1)}\int_0^\infty \frac{t^j}{\exp(t-x)+1} \, dt\]

Returns the value $F_j(x)$

Resources: [1] D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978) [2] J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982) [3] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981) [4] X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983) [5] H. M. Antia, Rational Function Approximations for Fermi-Dirac Integrals (1993)

https://arxiv.org/abs/0811.0116 https://de.wikipedia.org/wiki/Fermi-Dirac-Integral https://dlmf.nist.gov/25.12#iii

source
FewSpecialFunctions.MarcumQFunction
MarcumQ(μ::Float64, a::Float64, b::Float64)

Compute the generalized Marcum Q-function of order μ with non-centrality parameter a and threshold b.

Reference: [1] https://arxiv.org/pdf/1311.0681v1

source
FewSpecialFunctions.dQdbFunction
dQdb(M, a, b)

Derivative ∂Q_M(a,b)/∂b of the (standard) Marcum Q-function of order M. Requires M integer ≥1 and a>0.

source
FewSpecialFunctions.UFunction
U(a::Float64, x::Float64)::Float64

Compute the parabolic cylinder function U(a,x) of the first kind for real parameters.

S. Zhang and J. Jin, 'Computation of Special functions' (Wiley, 1966), E. Cojocaru, January 2009

source
FewSpecialFunctions.WFunction
W(a::Float64, x::Float64)::Float64

Compute the parabolic cylinder function W(a,x) for real parameters.

source
FewSpecialFunctions.dUFunction
dU(a::Float64, x::Float64)::Float64

Compute the derivative of the parabolic cylinder function U(a,x) for real parameters.

source
FewSpecialFunctions.dVFunction
dV(a::Float64, x::Float64)::Float64

Compute the derivative of the parabolic cylinder function V(a,x) for real parameters.

source
FewSpecialFunctions.dWFunction
dW(a::Float64, x::Float64)::Float64

Compute the derivative of the parabolic cylinder function W with parameters a evaluated at x.

source